Perbandingan Karakteristik Mortar Geopolimer Berbahan Dasar Fly Ash Nagan Raya Terhadap Mortar Konvensional Dengan FAS 0,5

Aiyub Aiyub

Abstract


Alumina (Al) and silica (Si) compounds in Nagan Raya fly ash (FANR) greatly affect the characteristics of geopolymer mortar so that it can be compared to conventional mortar using OPC Semen Padang (OPCSP) with FAS 0.5. This study aims to obtain the optimum composition of geopolymer mortar using Nagan Raya fly ash, so that it can be compared to conventional mortar using OPC with FAS 0.5. This test is carried out using the parameters of workability, setting time and compressive strength in conventional mortar. Alkaline solution was prepared using 10M NaOH solution, the ratio of alkaline solution to FANR was 1.0 and 1.1, respectively, with the ratio of Na2SiO3 to NaOH 2, respectively; 2.5; 3; and 3.5. The results show that the optimum workability of geopolymer mortar is 19.15 cm where this workability is close to the workability of conventional mortar of 19.2 cm, the optimum setting time of geopolymer mortar is 165 minutes where this setting time is close to the conventional mortar setting time of 191 minutes and the optimum compressive strength of mortar. geopolymer obtained at 28.86 MPa where the compressive strength is close to the compressive strength of conventional mortar of 34.38 MPa. So that geopolymer mortar based on FANR is still feasible to use and has a characteristic approach to conventional mortar made from OPCSP with FAS 0.5.

Keywords


geopolymer mortar, workability, setting time, compressive strength

Full Text:

PDF

References


Alvee, A. R., Malinda, R., Akbar, A. M., Ashar, R. D., Rahmawati, C., Alomayri, T., Raza, A., & Shaikh, F. U. A. (2022). Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Studies in Construction Materials, 16, e00792.

C. A. Rees, J. L. Provis, G. C. Lukey, dan J. S. Van Deventer, "In situ ATR-FTIR

study of the early stages of fly ash geopolymer gel formation," Langmuir, vol. 23, pp. 9076- 9082, 2007.

Davidovits, J. 2013.“Geopolymer cement”. Instititute Geopolymer. France.

E. G. Søgaard, G. Chaquinga, dan K. Gazda, "Geopolymer synthesis and characterization using Raman spectroscopy, FT-IR, DSC, XRD and compressive strength test," 2016.

F. Fan, "Mechanical and Thermal Properties of Fly ash-based Geopolymer Cement," Hunan University, 2015.

Fauzi Amir. 2018. “Investigation of Sidoarjo Mud As An Addition In Fly Ash Based Geopolymer Concrete”. Universiti Teknologi PETRONAS.

Hardjito, D., dan Rangan, B. V. (2005).Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Research Report GC, 94. Retrieved from http://www.geopolymer.org/fichiers_pdf/curtin-flyash-GP-concrete-report.pdf

Hardjito, D., et al.2012. “Pozzolanic Activity Assessment of LUSI (Lumpur Sidoarjo) Mud in Semi High Volume Pozzolanic Mortar”.Materials. 5(9): p. 1645-1660.

Komnitsas, K. dan D. Zaharaki, Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 2007. 20(14): p. 1261-1277.

Kosmatka, S.H., B. Kerkhoff, and W.C. Panarese. 2003. “Design and control of concrete mixtures”. PCA.

Lloyd, N.A, dan Rangan, B. V. (2010).Geopolymer Concrete with Fly Ash. Second International Conference on Sustainable Construction Materials and Technologies, 3, 1493-1504.

Nath, P., dan Sarker P. K. 2014. Effect Of GGBFS On Setting, Workability, AndEarly Strength Properties Of Fly Ash Geopolymer Concrete Curred InAmbient Condition. Construction And Building Materials, 66, 163-171.

Nurul SA.Penggunaan asam sulfat sebagai aktivator fly ash dalam aplikasi proses koagulasi pada pengolahan limbah cair industri pulp dan kertas. Jurnal Vokasi Teknologi Industri, Vol. 1, No. 1.

Prasetyo B.G, Tinjauan Kuat Tekan Beton Geopolymer Dengan Fly Ash Sebagai Bahan Pengganti Semen. 2015.Jurusan Teknik Sipil FT Universitas Muhammadiyah Surakarta.

R. Onori, "Alkaline activation of incinerator bottom ash for use in structural applications," p. Roma, 2011.

R. Vempati, A. Rao, T. Hess, D. Cocke, dan H. Lauer, "Fractionation and characterization of Texas lignite class ‘F’fly ash by XRD, TGA, FTIR, and SFM," Cement and concrete research, vol. 24, pp. 1153-1164, 1994.

Rattanasak. U, K. Pankhet, dan P. Chindaprasirt. 2011."Effect of chemical admixtures on properties of high-calcium fly ash geopolymer," InternationalJournal of Minerals, Metallurgy, and Materials.vol. 18, p. 364.

Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T. B., & Hadi, A. E. (2021). The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement. Polymers, 13(13), 2178. https://doi.org/https://doi.org/10.3390/polym13132178

S.Adi Darma, et al., 2018. Studi Experimental Pengaruh Perbedaan Molaritas Aktivator Pada Perilaku Beton Geopolimer Berbahan Dasar Fly Ash.Volume 7, Nomor 1.

Shi, C., D. Roy, and P. Krivenko. 2016. “Alkali-Activated Cements and Concretes”. Taylor & Francis.

Steenie, E. Wallah, 2014. Pengaruh Perawatan dan Umur Terhadap Kuat Tekan Beton Geopolimer Berbasis Abu Terbang, Vol. 4, No. 1.




DOI: https://doi.org/10.30601/jtsu.v8i2.3100

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Aiyub Aiyub

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Teknik Sipil Unaya


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

© Jurnal Teknik Sipil Unaya : Published by Center for Research and Community Service (LPPM) University of Abulyatama, Aceh, Indonesia. 2019